Is the Nickel-Dependent Urease Complex of Cryptococcus the Pathogen’s Achilles’ Heel?
نویسندگان
چکیده
The nitrogen-scavenging enzyme urease has been coopted in a variety of pathogenic organisms as a virulence factor, most notoriously to neutralize stomach acid and establish infection by the gastric pathogen Helicobacter pylori. The opportunistic fungal pathogen Cryptococcus neoformans also utilizes urease as a virulence factor, only in this case to invade the central nervous system (CNS) via the blood-brain barrier and cause life-threatening meningoencephalitis. A recent study [A. Singh, R. Panting, A. Varma, T. Saijo, K. Waldron, A. Jong, P. Ngamskulrungroj, Y. Chan, J. Rutherford, K. Kwon-Chung, mBio 4(3):e00220-13] genetically and biochemically characterizes the accessory proteins required for successful activation of the urease protein complex, including the essential nickel cofactor. The accessory proteins Ure4, Ure6, and Ure7 are all essential for urease function. Ure7 appears to combine the roles of two bacterial accessory proteins: it incorporates both the GTPase activity and nickel chaperone properties of UreE, a bacterial protein whose homolog is missing in the fungi. An accompanying nickel transporter, Nic1, is responsible for most, but not all, nickel uptake into the fungal cell. Mutants of the core urease protein Ure1, accessory protein Ure7, and transporter Nic1 are all attenuated for invasion of the CNS of mice, and urease activity may directly affect integrity of the tight junction of the endothelial cells of the blood-brain barrier, the network of proteins that limits paracellular permeability. This work highlights the potential of urease, its accessory proteins, and nickel transport as potential chemotherapeutic targets.
منابع مشابه
Factors Required for Activation of Urease as a Virulence Determinant in Cryptococcus neoformans
UNLABELLED Urease in Cryptococcus neoformans plays an important role in fungal dissemination to the brain and causing meningoencephalitis. Although urea is not required for synthesis of apourease encoded by URE1, the available nitrogen source affected the expression of URE1 as well as the level of the enzyme activity. Activation of the apoenzyme requires three accessory proteins, Ure4, Ure6, an...
متن کاملGTP-dependent activation of urease apoprotein in complex with the UreD, UreF, and UreG accessory proteins.
Syntheses of metal-containing enzymes often require the participation of accessory proteins. The roles played by many of these accessory proteins are poorly characterized. Klebsiella aerogenes urease, a nickel-containing enzyme, provides an ideal system to study metallocenter assembly. Here, we describe a method for isolating a complex containing urease apoprotein and the UreD, UreF, and UreG a...
متن کاملStructure of UreG/UreF/UreH Complex Reveals How Urease Accessory Proteins Facilitate Maturation of Helicobacter pylori Urease
Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a com...
متن کاملBiosynthesis of active Bacillus subtilis urease in the absence of known urease accessory proteins.
Bacillus subtilis contains urease structural genes but lacks the accessory genes typically required for GTP-dependent incorporation of nickel. Nevertheless, B. subtilis was shown to possess a functional urease, and the recombinant enzyme conferred low levels of nickel-dependent activity to Escherichia coli. Additional investigations of the system lead to the suggestion that B. subtilis may use ...
متن کاملThe nickel-responsive regulator NikR controls activation and repression of gene transcription in Helicobacter pylori.
The NikR protein is a nickel-dependent regulatory protein which is a member of the ribbon-helix-helix family of transcriptional regulators. The gastric pathogen Helicobacter pylori expresses a NikR ortholog, which was previously shown to mediate regulation of metal metabolism and urease expression, but the mechanism governing the diverse regulatory effects had not been described until now. In t...
متن کامل